Chem. Ber. 100, 1000-1015 (1967)

Hubert Schmidbaur und Werner Wolfsberger

Isostere metallorganische Verbindungen, IV¹⁾

Alkylmetallkomplexe von N-Silyl-phosphiniminen^{2,3)}

Aus dem Institut für Anorganische Chemie der Universität Würzburg

(Eingegangen am 5. Oktober 1966)

Aus N-Trialkylsilyl-triorganophosphiniminen, $R_3Si-N=PR_3$, und Trialkylaluminiumätheraten entstehen in fast quantitativer Ausbeute 1:1-Koordinationsverbindungen (4, 7, 10, 12, 13), die ein neues Strukturprinzip A enthalten. Dieses anorganische Grundgerüst ist wegen seiner isoelektronischen Beziehung zu jenem der Tris-triorganosilyl-amine B von besonderem Interesse:

Auch aus Trialkylgallium- bzw. -indium-ätheraten und N-Silyl-phosphiniminen werden entsprechende Addukte erhalten, bei denen die Aluminiumatome in A nunmehr durch Gallium- oder Indiumatome ersetzt sind (5, 6, 8, 9, 11). Die charakteristischen Eigenschaften dieser Verbindungstypen sowie ihre NMR- und IR-Spektren werden im Hinblick auf die Strukturund Bindungsverhältnisse diskutiert und die Bedeutung der genannten Isosteriebeziehung kritisch geprüft. — N-Trimethylsilyl-trimethylphosphinimin wurde aus Trimethylsilylazid und Trimethylphosphin erstmals dargestellt und entsprechend charakterisiert.

Anorganische und metallorganische Verbindungen mit dem Grundgerüst A waren bisher nicht bekannt. Einfache Überlegungen zeigen, daß dieses Bindungssystem mit dem der Trisilylamine B isoelektronisch ist. Die bemerkenswerten Eigenschaften der zuletzt genannten Verbindungsklasse, die nach dem heutigen Stand unserer Kenntnisse auf besondere Bindungsverhältnisse im Sinne der angegebenen mesomeren Grenzformeln zurückzuführen sind, ließen Untersuchungen an isoelektronischen Verbindungstypen wünschenswert erscheinen.

Im Rahmen dieser Problemstellung erschienen bisher folgende Arbeiten: ^{1a}) H. Schmidbaur, Angew. Chem. 77, 206 (1965); Angew. Chem. internat. Edit. 4, 201 (1965); ^{1b}) F. Schindler, H. Schmidbaur und G. Jonas, Angew. Chem. 77, 170 (1965); Angew. Chem. internat. Edit. 4, 153 (1965); Chem. Ber. 98, 3345 (1965); ^{1c}) H. Schmidbaur, G. Kuhr und U. Krüger, Angew. Chem. 77, 866 (1965); Angew. Chem. internat. Edit. 4, 877 (1965).

²⁾ Diplomarb. W. Wolfsberger, Univ. Würzburg 1966.

³⁾ Vorläufige Mitteil.: H. Schmidbaur und W. Wolfsberger, Angew. Chem. 78, 306 (1966); Angew. Chem. internat. Edit. 5, 312 (1966).

A. Darstellung und Eigenschaften von N-Trimethylsilyl-trimethylphosphinimin und seinen Homologen

Eine Betrachtung der Formel A zeigt unmittelbar, daß dieses System aus den Struktureinheiten

zusammengesetzt ist.

Das Grundglied des mit A bezeichneten Systems, in dem sämtliche freie Valenzen durch Methylreste abgesättigt sind, erschien uns wegen der zu erwartenden Einfachheit seiner IR- und NMR-Spektren für unsere Zwecke eine geeignete Modellsubstanz zu sein. Ein Großteil der über Trisilylamine gesammelten Ergebnisse war ebenfalls an der vollmethylierten Verbindung Tris-trimethylsilyl-amin erarbeitet worden⁴).

Darstellung: Zunächst wurde das bisher unbekannte N-Trimethylsilyl-trimethylphosphinimin (1) nach einem in der Literatur bereits vorgezeichneten Weg aus Trimethylsilylazid und Trimethylphosphin gewonnen⁵⁻¹¹). Die Umsetzung verläuft unter Stickstoffentwicklung:

$$(CH_3)_3P + (CH_3)_3Si-N_3 \longrightarrow N_2 + (CH_3)_3Si-N=P(CH_3)_3$$
 (1)
1

Es wurden befriedigende Ausbeuten an 1 erhalten, wenn man das Phosphin in das schwach siedende Azid (Sdp. 95°) eintropfen ließ. Auf dem gleichen Weg haben wir die bereits beschriebenen, aber vor allem spektroskopisch noch nicht untersuchten Homologen 2 und 3 dargestellt^{6,7}).

$$(CH_3)_3Si-N=P(C_2H_5)_3$$
 $(CH_3)_3Si-N=P(C_6H_5)_3$
2 3

- 10) J. S. Thayer und R. West, Inorg. Chemistry 3, 406, 889 (1964); 4, 114 (1965).
- 11) W. T. Reichle, Inorg. Chemistry 3, 402 (1964).

⁴⁾ U. Wannagat in: H. J. Emeleus und A. G. Sharpe, Advances in Inorganic Chemistry and Radiochemistry, Vol. 6, S. 225, Academic Press, New York 1964.

⁵⁾ L. Birkofer, A. Ritter und P. Richter, Angew. Chem. 74, 293, 294 (1962); Angew. Chem. internat. Edit. 1, 267 (1962); Chem. Ber. 96, 2750 (1963).

⁶⁾ L. Birkofer und S. M. Kim, Chem. Ber. 97, 2100 (1964).

⁷⁾ L. Birkofer und A. Ritter, Angew. Chem. 77, 415 (1965); Angew. Chem. internat. Edit. 4, 417 (1965).

⁸⁾ N. Wiberg, F. Raschig und R. Sustmann, Angew. Chem. 74, 388, 716 (1962); Angew. Chem. internat. Edit. 1, 551 (1962).

⁹⁾ N. Wiberg und B. Neruda, Chem. Ber. 99, 740 (1966).

Eigenschaften: 1 und seine Homologen sind sehr feuchtigkeitsempfindliche Substanzen, die in Gegenwart von Wasser unter Bildung von Ammoniak, Phosphinoxid und Siloxan zerstört werden. Unter Wasserausschluß sind sie jedoch unbegrenzt haltbar. In inerten organischen Lösungsmitteln lösen sie sich gut und liegen darin, was im Falle von 1 durch Molekulargewichtsbestimmung in Benzol nachgewiesen wurde, monomer vor. Diese Eigenschaft unterscheidet sie von den halogensubstituierten Phosphiniminen des Typs H₃CN=PCl₃, die als Dimere mit P-N-Vierringsystemen auftreten^{12,13)}.

1, eine wasserklare Flüssigkeit, stellt ein *Isosteres* zu Hexamethyldisiloxan und Hexamethyl-phospha-alumoxan¹⁴⁾ dar und steht in seinen physikalischen Eigenschaften, wie zu erwarten, zwischen diesen beiden Verbindungen:

	Schmp.	Sdp./Torr
(CH ₃) ₃ Si-O-Si(CH ₃) ₃	-56°	100.5°/760
$(CH_3)_3Si - N = P(CH_3)_3$	3-4°	169°/760
$(CH_3)_3 \stackrel{\Theta}{Al} = O - \stackrel{\oplus}{P} (CH_3)_3$	89 °	11 7°/1

In der Tabelle gewinnen für die Verbindungen von oben nach unten polare Grenzformen rasch an Bedeutung und führen zu einem Anstieg des Schmelzpunktes und zu einer Abnahme der Flüchtigkeit. Überlegungen über die Elektronegativitätsunterschiede der beteiligten Elemente führen zu einem übereinstimmenden Ergebnis und lassen für die Verbindungen zunehmende Polaritäten erwarten.

Protonenresonanzspektren: Die NMR-Daten der drei Silylphosphinimine sind aus den Tabb. 3, 4, 6 ersichtlich. Verbindung 1 weist im Spektrum zwei intensitätsgleiche Resonanzen auf, von denen diejenige der Trimethylsilylgruppe als Singulett, die der Trimethylphosphingruppe als Dublett auftritt. Alle Resonanzen sind von ¹H-¹³C-Seitenlinien begleitet und das Silylsingulett weist überdies ¹H-C-²⁹Si-Satelliten auf. Das auffallendste Ergebnis aber ist eine geringe, jedoch eindeutig nachweisbare, zusätzliche Aufspaltung des (CH₃)₃Si-Signals zu einem 1:1-Dublett. Diese Aufspaltung muß auf eine ungewöhnlich weitreichende Kopplung ¹H-C-Si-N-³¹P zurückgeführt werden. Bezeichnenderweise findet sich eine vergleichbare Wechselwirkung ¹H-C-Si-C-³¹P bei den isoelektronischen Phosphin-silylalkylenen, die nachstehend beschrieben werden¹⁵. Es liegt nahe, diese weitreichende Kopplung auf die besonderen Bindungsverhältnisse in der Brücke Si-N-P bzw. Si-C-P mit "freiem" Elektronenpaar am Zentralatom zurückzuführen.

Das Spektrum von $(CH_3)_3$ Si $-N = P(C_2H_5)_3$ (2) besteht aus einem A₃B₂X-Multiplett für die Triäthylphosphingruppe und einem "Singulett" für die Trimethylsilylgruppe. Letzteres weist jedoch die gleiche long range-Aufspaltung auf, die für 1 schon erwähnt wurde. Gleiche Verhältnisse finden sich schließlich auch für die Verbindung

¹²⁾ R. Schmutzler, Chem. Commun. 1965, 19.

¹³⁾ H. Hess und D. Forst, Z. anorg. allg. Chem. 342, 240 (1966).

¹⁴⁾ F. Schindler, H. Schmidbaur und G. Jonas, Angew. Chem. 77, 170 (1965); Angew. Chem. internat. Edit. 4, 153 (1965); Chem. Ber. 98, 3345 (1965).

¹⁵⁾ H. Schmidbaur und W. Tronich, Chem. Ber. 100, 1032 (1967).

•			
1	2	3	Zuoranung
2975 m	2960 st		
2945 st	2940 st		vCH_3 und CH_2
2908 m	2900 m		
2890 m	2875 m		
	1460 m		
1420 m	1410 Sch		
	1380 st		
1313 sst			8CH₃Р
1286 sst/br	1310 sst/br	1315 sst	vP = N
1250 Bab	1350 Sah	1302 sst	SCH S:
1239 Scn 1241 set	1259 Sch	1258 St	0CH351
1241 551	1241 550	1181 schw	
		1157 schw	
		1067 schw	β-CH
		1026 schw	
		1009 sst	Phosphorabhängige
			в-СН
		998 schw	Phenylring-
			deformation
	1045 m		
	1025 m		v(C-C)
	1010 schw		
	9 97 schw		
969 m			ρCH ₃ P
932 881	065	950	
849 sst 826 sst	865 sst 826 sst	839 sst 827 sst	ρ₁CH₃Si
0-0 000	775 st		δCH ₂
747 st	760 st	- 10	-
	750 st	749 st	ρ ₂ CH ₃ S1
720 m	720 schw		vasPC3
		712 sst	~-CH
		694 sst	l-en
671 m	671 m	676 Sch	v _s PC ₃
631 m	616 m	617 schw	v _s SiC ₃
556 schw	538 schw		vSi-N
		584 m	Dharakazakkäzster
		529 SSI	Phenyldeformation
		485 schw	•

Tab. 1. IR-Spektren der Verbindungen 1, 2 und 3 (in cm⁻¹)

 $(CH_3)_3Si - N = P(C_6H_5)_3$ (3), abgeschen davon, daß an Stelle des A_3B_2X -Systems hier ein aromatisches Multiplett erscheint. Die relativen Flächen entsprechen in beiden Fällen den Erwartungen.

Die chemischen Verschiebungen der $(CH_3)_3$ Si-Protonen sind bei allen drei Verbindungen praktisch gleich. Dies scheint zunächst anzudeuten, daß der Bindungszustand dieser Gruppierung für alle drei Substanzen gleich ist. Da aber vor allem bei der phenylsubstituierten Verbindung ein starker elektronenanziehender Effekt der aromatischen Kerne sich an der Silylgruppe im Sinne einer Abnahme der Abschirmung bemerkbar machen sollte, dürfte es sich bei dem δ -Wert dieser Molekel um das Resultat einer Kompensation von induktivem und Anisotropie-Effekt der Phenylringe handeln.

Die NMR-Daten der R₃P-Reste in den Silylphosphiniminen sind jenen der entsprechenden Triorganophosphinoxide vergleichbar¹⁴). Dies bestätigt die analogen Bindungsverhältnisse in beiden Substanzklassen:

 $R_3P=0$ $R_3P=N$ SiR_3

Infrarotspektren: Die IR-Spektren der drei Silylphosphinimine wurden im KBr-Bereich aufgenommen (Tab. 1). Infolge der Variation der Liganden am Phosphoratom weisen die Spektren natürlich größere Unterschiede auf, jedoch sind die auf den "Siliciumteil" der Moleküle zurückgehenden Banden weitgehend lagekonstant. Wichtig ist, daß eine eindeutige Zuordnung der P=N-Valenzschwingung möglich war. Bei der Anlagerung von Acceptormolekülen an Silylphosphinimine sollte sich hier die markanteste Änderung in den IR-Spektren ergeben. Die Zuordnung der Si-N-Valenzschwingung ist in allen Fällen noch problematisch und muß als Versuch gewertet werden. Speziell für die Verbindung 1 war die vergleichende Betrachtung des Spektrums des isoelektronischen Trimethylphosphin-trimethylsilylmethylens, (CH₃)₃Si-CH=P(CH₃)₃, von großem Wert, über das in nachstehender Arbeit¹⁵) berichtet wird. Die Parallelen sind aus den dort gezeigten Abbildungen offensichtlich.

B. Koordinationsverbindungen der *N*-Silyl-phosphinimine mit Trialkylmetall-Verbindungen des Aluminiums, Galliums und Indiums

Darstellung: Uns lag daran, den Umgang mit den außerordentlich schwer zu handhabenden freien Alkylmetall-Verbindungen nach Möglichkeit zu umgehen. Aus diesem Grund wurden bei den Syntheseversuchen die Ätherate dieser Verbindungen eingesetzt, die nicht nur ein einfacheres experimentelles Vorgehen erlauben, sondern auch ohne Schwierigkeiten in beliebigen Mengen im Labor dargestellt werden können. Es zeigte sich, daß tatsächlich auch diese Reaktionskomponenten bei der Umsetzung mit Silylphosphiniminen (unter Freisetzung des koordinativ gebundenen Äthers) Komplexe bilden. Nach der allgemeinen Gleichung (2) ließen sich in allen Fällen die gewünschten Präparate erhalten. Im einzelnen wurden die Vertreter 4-13 synthetisiert.

Obwohl bei allen Verbindungen nahezu quantitative Ausbeuten registriert werden konnten (Tab. 10, Versuchsteil), waren die Reaktionsbedingungen, unter denen dieser vollständige Umsatz zu erreichen war, durchaus unterschiedlich. Mit dem Phosphinimin 1 war bei Raumtemperatur nur langsame Reaktion zu erreichen und erst bei vorsichtigem Erwärmen und langsamem Abdestillieren des Äthers konnte das Gleichgewicht der Gl. (2) ganz auf die rechte Seite verschoben werden. Das Phosphinimin 2

$$R_{3}Si-N=PR_{3}^{!} + R_{3}^{!'}Me \cdot O(C_{2}H_{5})_{2} \longrightarrow (C_{2}H_{5})_{2}O + \bigvee_{R_{3}^{!}P'}^{SiR_{3}}MeR_{3}^{!'}$$
(2)

(R = CH₃; R' = CH₃, C₂H₅, C₆H₅; R'' = CH₃, C₂H₅; Me = Al, Ga, In)

dagegen lieferte mit den Trimethylmetall-ätheraten schon bei Normalbedingungen unter Selbsterwärmung des Gemisches die erwartete Menge Äther, ohne daß äußeres Erhitzen oder destillative Entfernung des Äthers nötig waren. Demgegenüber trat mit dem Phosphinimin 3 bei Raumtemperatur überhaupt keine Reaktion ein. Erst mehrstündiges Erhitzen auf 100° und kontinuierliches Entfernen des freigesetzten Äthers führten einen vollständigen Reaktionsablauf herbei. Diese Beobachtungen weisen auf eine deutliche Abstufung des komplexbildenden Verhaltens der Silylphosphinimine in Abhängigkeit vom Substituenten am Phosphoratom. Es entspricht den Erwartungen, daß diese Abstufung im Sinne von 2 > 1 > 3 festgelegt ist: Die induktiven Effekte von CH₃, C₂H₅ und C₆H₅ lassen sich ebenfalls in diese Reihenfolge einordnen. Da bei den Umsetzungen auch jeweils Diäthyläther als konkurrierender Komplexligand zugegen war, lassen sich die Silylphosphinimine zusammen mit diesem hinsichtlich ihrer Donatoreigenschaften wie folgt einordnen:

 $(CH_3)_3SiNP(C_2H_5)_3 > (C_2H_5)_2O \approx (CH_3)_3SiNP(CH_3)_3 > (CH_3)_3SiNP(C_6H_5)_3$

Diese Reihenfolge gilt nur für die Partner $(CH_3)_3Al,Ga,In$ und sollte noch durch thermochemische Daten gestützt werden.

Eigenschaften: Die wichtigsten physikalischen Konstanten der Verbindungen 4 bis 13 sind in Tab. 2 zusammengefaßt. Alle Substanzen sind farblose und stark luft- und feuchtigkeitsempfindliche Stoffe, die bei Raumtemperatur in kristallinem Zustand vorliegen. Sie zeigen meist definierte Schmelzpunkte und erleiden bei der Schmelztemperatur noch keine Zersetzung. In organischen Lösungsmitteln wie Benzol, Petroläther, Methylenchlorid, Tetrachlorkohlenstoff und Äther sind sie ohne Zersetzung gut löslich. In Benzol zeigen sie nach kryoskopischen Molekulargewichtsbestimmungen einfaches Molgewicht.

Die Reaktion mit Wasser verläuft vor allem mit 4, 7, 10, 12 und 13 sehr stürmisch und oft sogar unter Feuererscheinung. Die Hydrolyse der übrigen Substanzen ist etwas gemäßigt. Bei allen Verbindungen sind Alkan, Metallhydroxid, Ammoniak, Triorganophosphinoxid und Trimethylsilanol bzw. sein Kondensationsprodukt Hexamethyldisiloxan die Endprodukte des hydrolytischen Abbaus:

 $R_3Si-N=PR'_3 \cdot MeR''_3 + 5 H_2O \longrightarrow 3 R''H + Me(OH)_3 + NH_3 + R'_3PO + R_3SiOH$ (3)

In ähnlicher Weise ist die Oxydationsempfindlichkeit abgestuft. 4 fängt nach einiger Zeit an der Luft von selbst Feuer, die phenyl- und äthylsubstituierten Homologen werden dagegen nur mehr oder weniger langsam von Sauerstoff angegriffen.

Die nur mit aliphatischen Resten abgesättigten Glieder sind ausnahmslos noch ohne Zersetzung im Vakuum destillierbar und zeigen bei den benötigten Temperaturen von 100-150° keine Tendenz zur Dissoziation in Umkehrung der Bildungsgleichung (2). Verbindung 11 und 13 aber können nicht mehr im Vakuum destilliert werden. Sie zerfallen bei Badtemperaturen von 175° in Umkehrung der Bildungsgleichung. Diese verhältnismäßig geringe Beständigkeit von 11 und 13 entspricht der oben erwähnten geringeren Bildungstendenz bei der Synthese.

	4	5	6	7	8	9
Schmp. Sdp./Torr	79 — 80° 120°/1	32—34° 59°/1	43—44° 67°/1	169° 135°/1*)	113–114° 115°/1*)	107—110° 125—128°/l
Schmp. Sdp./Torr	10 28-30° 130°/1	11 87–89° Zers.	12 57 — 59° 135°/1	13 126–130° Zers.	*)sub]	limiert

Tab. 2. Schmelz- und Siedepunkte der Koordinationsverbindungen

Protonenresonanzspektren: Von den Verbindungen 4 bis 13 wurden bei $30-35^{\circ}$ und 60 MHz hochauflösende Kernresonanzspektren aufgenommen. Als Lösungsmittel diente Tetrachlorkohlenstoff. Zur Auswertung der Ergebnisse ist vor allem ein Vergleich mit den Spektren der freien Silylphosphinimine 1 bis 3 von Bedeutung. Die Tabellen 3-5 bringen eine Gegenüberstellung der NMR-Daten eines Phosphinimins und seiner Koordinationsverbindungen. Die Zahl, Multiplizität und das Flächenverhältnis der beobachteten Resonanzen bestätigen in allen Fällen die geforderte Zusammensetzung und Konstitution der Verbindungen.

Die vollständig methylsubstituierten Verbindungen 4, 5 und 6 zeigen jeweils drei flächengleiche Signale, von denen eines durch die ${}^{1}H$ -C- ${}^{31}P$ -Kopplung als Dublett erscheint.

Ein Vergleich der chemischen Verschiebungen und Kopplungskonstanten mit jenen von 1 zeigt, daß die Addition der Trimethylmetall-Verbindung tiefgreifende Veränderungen in der Elektronenverteilung dieser Komponente hervorruft. Die beiden Signale von 1 sind nach der Komplexbildung beträchtlich nach niedrigeren Feldstärken verschoben, während die Kopplungskonstanten $J({}^{1}H$ -C- ${}^{31}P$), $J({}^{1}H$ -C- ${}^{29}Si$) geringfügig zunehmen. Diese Veränderungen nehmen gemäß der zunehmenden Acceptorstärke der Trimethylmetall-Verbindungen von 6 über 5 nach 4 zu. Es fällt auf, daß die Differenzen für δ - und J-Werte beim Übergang von 1 nach 4, 5 oder 6 an den (CH₃)₃P-Resten durchwegs größer sind als an den (CH₃)₃Si-Resten. Dies verdeutlicht die relativ zu der mit den Siliciumatomen stärkere Bindungsbeziehung der Stickstoffatome mit den Phosphoratomen. Damit wird die Annahme bestätigt, daß die ($p \rightarrow d$) π -Wechselwirkungen im Sinne der Grenzformeln C und D stark unterschiedliches Gewicht haben:

$$\begin{array}{cccc} R_{3}Si-\underline{N}=PR_{3} &\longleftrightarrow & R_{3}Si-\underline{\widetilde{N}}-\overset{\odot}{P}R_{3} &\longleftrightarrow & R_{3}\overset{\odot}{Si}=\underline{N}-\overset{\odot}{P}R_{3} \\ C & D \end{array}$$

Dies folgt nicht nur aus den unterschiedlichen Elektronegativitäten von Phosphor und Silicium, sondern auch aus den ungleichen kovalenten Radien sowie aus den Formalladungen dieser Atome. Aus der Tatsache, daß sogar die Konstanten J(1H-C-31P) und J(1H-C-29Si) eine Vergrößerung erfahren, kann auf eine gewisse Umhybridisierung der Phosphor- bzw. Siliciumatome im Sinne zunehmender s-Anteile in den auf die Kohlenstoffatome gerichteten Orbitalen geschlossen werden. Diese Umhybridisierung als Folge einer zunehmenden Elektronegativität des Stickstoffatoms und seines Bindungszustands ist wiederum an den Phosphoratomen weit stärker ausgeprägt als an den Siliciumatomen.

	1	4	5	6
δ(CH ₃) ₃ Si	+6.4	-13.2	9.0	-6.6
$\delta(CH_3)_3P$	-80.8	-104.0	98.2	-95.6
$\delta(CH_3)_3$ Me		+ 61.0	+36.5	+32.5
$J(^{1}H-C-^{29}Si)$	6.4	6.6	6.55	6.5
$J(^{1}H-^{13}C-Si)$	117	119	118	117.5
$J(^{1}H-C-^{3}P)$	12.4	12.8	12.7	12.6
$J(^{1}H^{-13}C^{-}P)$	127	130	129	128.5
$J(^{1}H^{-13}C^{-Me})$		109	117	124.5
Integralverhältnis	ber. 1:1	1:1:1	1:1:1	1:1:1
	gef. 1.03:1	1.02:1:0.99	0.97:1:0.97	1:1:0.96

Tab. 3. NMR-Daten der Verbindungen 1, 4, 5 und 6

Die am Phosphor äthylsubstituierten Verbindungen 7, 8 und 9 weisen im NMR-Spektrum neben den beiden Singulettsignalen der Trimethylsilicium- und der Trimethylmetallgruppen jeweils ein Multiplettsignal der Triäthylphosphorgruppierung auf, das sich als A_3B_2X -System interpretieren läßt. Die zwei Tripletts und die zwei Quartetts dieses Multipletts zeigen im Gegensatz zum freien Phosphinimin 2 nur in geringem Maße die Merkmale einer Kopplung zweiter Ordnung, da sich die Einwirkung der Trimethylmetallgruppe auf die benachbarte Methylengruppe stärker auswirkt als auf die weiter entfernt liegende Methylgruppe. Hinsichtlich des Aus-

	2	7	8	9
δ(CH ₃) ₃ Si	+6.1	-14.8	-7.5	-4.5
δ(CH ₃) ₃ P	62.6	-68.5	66.9	-66.0
$\delta(CH_2)_3 P$	88.0	-120.0	-1 09.5	106.0
$\delta(CH_3)_3$ Me	_	+60.5	+36.3	+31.5
$J(^1H-C-^{29}Si)$	6.5	6.75	6.7	6.6
$J(^{1}H^{-13}C^{-Si})$	117	120	119	118.5
$J(^{1}H-C-C-^{31}P)$	16.6	17.5	17.3	17.1
$J(^{1}H-C-^{31}P)$	10.5	11.5	11.3	11.1
$J(^{1}H-C-C-^{1}H)$	8	8	8	8
$J(^{1}H^{-13}C^{-}Me)$	-	110	117.5	124.5
Integralverhältnis	ber. 1.67:1	1.67:1:1	1.67:1:1	1.67:1:1
-	gef. 1.65:1	1.67:1:1.04	1.67 : 1 : 0.99	1.67:1: 0.9 7

Tab. 4. NMR-Daten der Verbindungen 2, 7, 8 und 9

maßes der Veränderungen ist wie bei der Gruppe 4-6 eine Abstufung im Sinne von Al > Ga > In festzustellen. Die Effekte der Komplexbildung beim Übergang von 4 nach 7, 8 oder 9 entsprechen größenordnungsmäßig denen bei der vorgenannten Gruppe 1/4, 5, 6.

	10	12
δ(CH ₃) ₃ Si	14.8	-15.0
δ(CH ₃) ₃ P	103.5	-116.0
$\delta(CH_2)_3 P$		-68.0
δ(CH ₃) ₃ A1	-55.5	-56.0
δ(CH ₂) ₃ A1	+19.2	+17.4
$J(^1H-C-^{29}Si)$	6.6	6.5
$J(^{1}H-C-^{31}P)$	12.75	11.0
$J(^{1}H-C-C-^{31}P)$		17.2
$J(^{1}H-C-C-^{1}H)Al$	7.8	7.9
$J(^{1}H-C-C-^{1}H)P$		7.1
Integralverhältnis	ber. 1:1:1.67 ^{a)}	1:0.66:0.66 ^{ь)}
	gef. 1:1.02:1.69	1:0.65:0.71

Tab. 5. NMR-Daten der Verbindungen 10 und 12

a) Verhältnis der Flächen des (CH₃)₃Si-Singuletts zu der des (CH₃)₃P-Dubletts und des (C₂H₃)₃Al-Multipletts.
 b) Verhältnis der Flächen des (CH₃)₃Si-Singuletts zu der des dublettisierten (CH₂)₃P-Quartetts und des (CH₂)₃Al-

Quartetts. (Die übrigen Signale überlagern sich.)

Die Spektren der am Phosphoratom phenylsubstituierten Verbindungen 11 und 13 ergaben Werte, die von denen des zugrundeliegenden Phosphinimins 3 nur wenig verschieden sind (Tab. 6). Daraus ist zu schließen, daß die Anlagerung von Alkylmetall-Verbindungen kaum noch Änderungen im Bindungszustand von 3 bewirkt. Die Beobachtungen über Bildungstendenz und Stabilität von 11 und 13 zeigen ebenso wie dieser Befund, daß die Bindungsbeziehung zwischen Donator und Acceptor hier ein Minimum erreicht.

Die in den Silylphosphiniminen 1, 2 und 3 aufgefundene long range-Kopplung ¹H-C-Si-C-³¹P ist in allen Additionsverbindungen 4-13 erloschen. Offenbar genügen die Inanspruchnahme eines freien Elektronenpaars und die damit verbundenen Veränderungen des Bindungszustandes des Stickstoffatoms, um eine so weitreichende Kopplung zu unterbinden.

	3	11	13
δ(CH ₃) ₃ Si	+5.2	+5.0	+3.8
δ(Phenyl)	-432 bis -468	-436 bis -478	-438 bis -474
$\delta(CH_3)_3$ Me	_	+ 37.5	+71.5
$J(^{1}H-C-^{29}Si)$	6.5	6.5	6.6
$J(^{1}H^{-13}C^{-Si})$	117	117.5	a)
J(1H-13C-Me)	_	117.5	a)
Integralverhältnis	ber. 1.67:1	1.67:1:1	1.67:1:1
	gef. 1.72:1	1.69:1:0.98	1.74 : 1 : 0.98

Tab. 6. NMR-Daten der Verbindungen 3, 11 und 13

a) Wegen zu geringer Intensität nicht mit Sicherheit meßbar.

4	5	6	10	Zuordnung
1312 st 1297 sst	1312 st 1295 sst	1311 st 1293 sst	1316 m 1296 st	δСН3Р
1263 st 1251 sst	1262 st 1248 sst	1258 st 1247 sst	1285 m 1251 st	δCH₃Si
1178 st	1180 st	1150 Sch	(1178 schw)	δCH ₃ Me
1071 sst	1103 sst	1120 sst	1067 sst	vP = N
			977 m 958 Sch	v(C-C)
959 Sch 945 sst	960 st 941 sst	961 m—st 940 sst	941 st	ριCH3Ρ
883 st	875 st	871 st	880 m	ρ ₂ CH ₃ P
861 Sch 842 sst	844 sst 837 sst	844 sst 833 sst	842 st	ρ ₁ CH ₃ Si
a)	b)	c)	d)	
683 st	704 st	681 st	655 m	vasSiC3
658 st	644 st	641 st	639 m	v _s SiC ₃
618 st	604 m	591 m	619 m 584 m	
560 m-st	535 st 518 st 502 st	472 st 464 st 458 st		vMeC3
520 m - st		520 schw	500 m	vSi - N(?)

Tab. 7. IR-Daten der Verbindungen 4, 5, 6 und 10 (in cm⁻¹)

a)b)c)d) Breite Bandenzüge bzw. Gebiete, in denen sich mehrere Banden überlagern, wobei folgende Maxima erkennbar sind:

a) bei 766, 754, 743 und 726/cm b) bei 761, 750, 743 und 736/cm c) bei 760, 751, 742 und 718/cm d) bei 765, 755, 740 und 725/cm

Chemische Berichte Jahrg. 100

65

Infrarotspektren: Von den Verbindungen 4 bis 13 wurden im Kaliumbromidbereich Infrarotspektren aufgenommen. Zur Zuordnung der Banden wurde eine größere Zahl von Vergleichsspektren in die Diskussion mit einbezogen. Die Tabellen 7, 8 und 9 enthalten eine Aufstellung der von uns gefundenen Banden und ihre Zuordnung.

7	8	9	1 2	Zuordnung
1304 Sch 1278 Sch	1304 Sch 1277 m	1298 Sch 1276 Sch	1302 m 1277 Sch	
1262 Sch 1251 sst	1260 st 1249 sst	1258 sst 1247 sst	1261 Sch 1251 st	δCH ₃ Si
1179 sst	1178 st	a)	(1178 m)	δCH₃Me
1055 sst	1093 sst	1105 sst/br	1055 sst	vP=N
1041 Sch 1030 Sch 1015 Sch 991 m	1040 st 1028 st 1012 m 990 schw	1038 st 1026 st 1010 Sch 988 Sch	1045 Sch 1027 Sch 1011 Sch 980 m 917 Sch 900 m	v(C-C)
857 sst 840 sst	856 sst 837 sst	852 sst 833 sst	852 sst 836 sst	ρ ₁ CH ₃ Si
b)	c)	d)	e)	
690 st	691 st 678 m	690 st 678 m	678 st 669 Sch	$v_{as}SiC_3$
624 Sch 612 st	624 m	622 m	648 st 625 Sch 615 Sch 605 Sch	ν₅SiC3
553 m 527 st 438 m 420 Sch	588 st 540 st 518 st 505 Sch 438 m 419 Sch	596 Sch 588 st 476 st 460 st 440 Sch 418 Sch	586 Sch 494 schw 436 schw	

Tab. 8. IR-Daten der Verbindungen 7, 8, 9 und 12 (in cm⁻¹)

a) Liegt unter der breiten Phosphor-Stickstoff-Valenzschwingungsbande b)c)d)e) Breite Bandenzüge, wobei folgende Maxima erkennbar sind:

b) bei 795, 771, 761, 750 und 720/cm

c) bei 790, 770, 751 und 722/cm

d) bei 784, 762, 748 und 718/cm

e) bei 772, 752, 722 und 700/cm

Während eine Deutung der Banden im Bereich von 1400 - 800/cm in der Regel nur wenig Schwierigkeiten bereitete, war das Gebiet von 800 - 600/cm meist recht problematisch. Die im zuerst genannten Bereich erscheinenden CH₃- und CH₂-Deformationsschwingungen, die P=N-Valenzschwingung sowie ein Teil der CH₃- und CH₂-Pendelschwingungen können als sicher zugeordnet gelten. Die im folgenden Gebiet auftretenden Si-C- und P-C-Valenzschwingungen und die noch fehlenden CH₃und CH₂-Pendelschwingungen bildeten demgegenüber meist breite Bandenzüge, in denen die einzelnen Maxima nur mit großer Unsicherheit erkannt werden können. Ähnliche Schwierigkeiten entstehen zuweilen auch im Gebiet der Metall-Kohlenstoff-Valenzschwingungen. Speziell bei den phenylhaltigen Verbindungen 11 und 13 führen die zahlreichen Banden dieser Liganden zu Komplikationen.

11	13	Zuordnung
1318 schw	1313 m	
1266 m 1252 st	1261 m 1248 st	δCH ₃ Si
1179 st	1181 m	δCH ₃ Me
1112 sst	1116 Sch 1107 sst	Phosphorabhängige β-CH-Schwingung
1063 Sch 1026 st	1076 st	vP=N
1043 Sch 1026 st	1060 Sch 1025 m	β-СН
1000 st	997 m	Phenylring- pulsation
856 sst 838 sst	857 sst 835 sst	ρ ₁ CH ₃ Si
a)	b)	
668 st	666 m	$v_{as}SiC_3$
626 m	612 m	v _s SiC ₃
573 schw	584 schw	
544 m 527 sst 519 Sch 512 Sch	532 sst 527 Sch 515 Sch 498 schw	Phosphorabhängige Phenylringdefor- mation und vMeC ₃
451 schw	432 schw	

Tab. 9. IR-Spektren der Verbindungen 11 und 13 (in cm⁻¹)

a)b) Breite Bandenzüge, wobei folgende Maxima erkennbar sind:

a) bei 776, 751, 737, 724, 713 und 694/cm

b) bei 769, 753, 745, 712 und 691/cm

Im Rahmen der Problemstellung dieser Arbeit wären die Valenzschwingungen vP-N, vSi-N und vMe-N von besonderem Interesse. Von diesen Banden war jedoch in allen Fällen nur die erste mit Sicherheit zuzuordnen. vSi-N, bei den freien Phosphiniminen noch auffindbar, konnte nicht mehr ausgesondert werden. Eventuell reicht auch der hier untersuchte Frequenzbereich dazu nicht mehr aus. Dies ist übrigens für vMe-N wohl mit Sicherheit der Fall.

vP = N der freien Phosphinimine 1-3 erfährt bei der Addition der Alkylmetall-Verbindungen eine starke langwellige Verschiebung, die für die einzelnen Donator-Acceptor-Kombinationen recht unterschiedliche Werte erreicht. Die Effekte sind generell bei den Alkylaluminiumkomplexen am stärksten ausgeprägt und fallen über Trimethylgallium zum Trimethylindium hin systematisch ab: $4 \approx 10 > 5 > 6$ und $7 \approx 12 > 8 > 9$. Diese Abstufung bestätigt die größere Acceptorstärke der AlR₃-relativ zu den GaR₃- und InR₃-Verbindungen¹⁶). Die Veränderungen sind weiterhin am

¹⁶⁾ Vgl. z. B. W. Strohmeier und K. H. Hümpfner, Z. Elektrochem., Ber. Bunsenges. physik. Chem. 61, 1010 (1957), und dortige Literaturangaben.

äthylsubstituierten Phosphinimin 2 weit größer als an der methylsubstituierten Verbindung 1, was wiederum für eine größere Donatorstärke der ersteren Verbindung spricht. Die zugehörigen Verschiebungsdifferenzen belaufen sich auf folgende Werte (in cm^{-1}):

Verbindung	4	5	6	7	8	9	10	12
$\Delta v P = N$	215	183	166	255	217	205	219	255

C. Diskussion der Ergebnisse

An zehn Modellbeispielen konnte gezeigt werden, daß sich Verbindungen des eingangs formulierten Strukturprinzips A in einfacher Weise aus Alkylmetall-Verbindungen und *N*-Trialkylsilyl-phosphiniminen darstellen lassen. Bei einem Versuch, die wichtigsten Eigenschaften der durchwegs auffallend stabilen Vertreter der Substanzklasse im Sinne der *Isosterie-Beziehung* zu den isoelektronischen Trisilylaminen zu interpretieren, ließen sich erwartungsgemäß nur wenige echte Anhaltspunkte auffinden. Beobachtungen über unterschiedliche Löslichkeit und Flüchtigkeit oder über thermische und chemische Stabilität sind hier nur sehr bedingt brauchbar. Die chemische Reaktivität der Komplexe wird wohl vollständig von der Reaktionsfähigkeit der Alkylmetall-Reste bestimmt und läßt keine Rückschlüsse auf das trigonale anorganische Skelett zu.

Unter den *spektroskopischen Daten* geben die IR-Spektren, wie erwähnt, einige Probleme auf, da ein Teil der wichtigeren Banden nicht mit ausreichender Sicherheit festgelegt werden kann. An den zufriedenstellend zugeordneten Banden läßt sich zwar zeigen, daß der Bindungszustand der Trimethylsilylgruppe von 4 sich gegenüber dem im isosteren Tris-trimethylsilyl-amin – aus dem es formal durch paarweisen Ersatz zweier Siliciumatome durch das Atompaar Al/P entsteht – nicht verändert. Schon eine Aussage über die Natur der verbleibenden Si–N-Bindung ist jedoch kritisch zu werten, da sich hier die Symmetrieverhältnisse beim Übergang grundlegend wandeln. Es fällt schwer, die Banden $v_{as}Si-N-Si$ und v_sSi_3N des Trisilylamins¹⁷⁾ zum nicht ganz sicher zugeordneten vSi-N in Beziehung zu setzen, wenn gleichzeitig nur vP=N mitverwertet werden kann.

Nur die NMR-Spektroskopie liefert einige Ergebnisse, die sich im Sinne der Isosteriebeziehung überzeugender auswerten lassen. Dies soll an dem am leichtesten übersehbaren Verbindungspaar gezeigt werden. Es muß sofort auffallen, daß die chemische Verschiebung $\delta(CH_3)_3Si$ von 4 gegenüber jener in $[(CH_3)_3Si]_3N$ nur sehr wenig verändert ist. Dieser Befund wird unterstrichen durch die nahezu unveränderten Kopplungskonstanten $J(^1H^{-13}C)Si$ und $J(^1H^{-C-29}Si)$ in beiden Verbindungen (Fehlergrenzen der Messungen ± 1 bzw. ± 0.1 Hz). Es kann hieraus auf einen praktisch gleichartigen Bindungszustand der $(CH_3)_3Si-N$ -Gruppierung in beiden Molekeln geschlossen werden. Dieses Ergebnis kann noch ergänzt werden durch eine zusätzliche Beobachtung: Wird aus den Werten der chemischen Verschiebung δ und der Kopplungskonstanten $J(^1H^{-13}C)$ der $(CH_3)_3P$ -, $(CH_3)_3Si$ - und $(CH_3)_3Al$ -Gruppierungen in 4 das arithmetische Mittel gebildet, so erhält man die Zahlenwerte $\overline{\delta} = -18.7$ und $\overline{J} = 119.3$ Hz. Vor allem der letztere Wert stimmt wieder überraschend

¹⁷⁾ H. Bürger, Habilitationsschrift, Techn. Hochschule Braunschweig 1966.

gut mit dem des Trisilylamins überein, und auch die entsprechenden δ -Werte weichen nicht stark voneinander ab. Dieses Resultat erinnert an die sehr ähnliche Beziehung bei dem Isosterenpaar¹⁴) R₃Si-O-SiR₃ und R₃P-O-AlR₃, wo ebenfalls zwei Siliciumatome paarweise durch das Atompaar Al/P ersetzt werden. Wir haben aber schon dort darauf hingewiesen, daß einer solchen Handhabung spektroskopischer Daten noch eine exakte mathematisch-physikalische Grundlage ermangelt¹⁴).

Wohl die interessanteste Frage in der Isosteriebetrachtung wäre hier die nach der Molekülgeometrie des Komplexes 4 und seiner Homologen. Tris-trimethylsilyl-amin ist bekanntlich, was sein Si₃N-Gerüst anbelangt, eine planar gebaute Molekel¹⁸). Es ist, neben Beobachtungen über die geringe Basizität der Verbindung sowie über Bindungsenergie und Kraftkonstanten der Si—N-Bindung, vor allem dieses Kriterium, das als Indiz für die Anwesenheit von π -Mehrfachbindungsanteilen in dieser Molekel gewertet wird^{4, 19} (vgl. die Grenzformeln B ff.). Die oben aufgezeigten Beziehungen zwischen 4 und Tris-trimethylsilyl-amin lassen uns auch für 4 und seine Homologen planaren Molekülbau vermuten. Es bleibt kristallographischen Untersuchungen vorbehalten, diese Vermutung zu bestätigen.

Dem Institutsdirektor, Herrn Prof. Dr. M. Schmidt, sind wir für großzügige Förderung zu großem Dank verpflichtet. Wir danken dem Fonds der Chemischen Industrie für finanzielle Unterstützung und der Deutschen Forschungsgemeinschaft für das zur Verfügung gestellte NMR-Spektrometer.

Beschreibung der Versuche

Die angestellten Versuche mußten größtenteils unter Stickstoffatmosphäre und vor allem unter Feuchtigkeitsausschluß durchgeführt werden. Lösungsmittel und Geräte wurden dementsprechend vorgetrocknet.

Analysen: Zur Bestimmung des Metallgehalts wurde eine Probe der Substanz vorsichtig hydrolysiert (Explosionsgefahr!); dann wurden Aluminium, Gallium bzw. Indium komplexometrisch titriert²⁰). Stickstoff wurde nach Ulsch bestimmt²¹). Die Verbrennungsanalysen stießen in den meisten Fällen — in zwei verschiedenen Analysenlaboratorien — auf große Schwierigkeiten und lieferten nur wenig zuverlässige Werte. In Tab. 10 werden nur die befriedigend ausgefallenen Zahlen mit aufgeführt. Die Molekulargewichtsbestimmungen wurden kryoskopisch an benzolischen Lösungen durchgeführt.

Spektren: Die NMR-Spektren wurden mit einem Gerät Varian A 60 bei 60 MHz und bei der gewöhnlichen Arbeitstemperatur dieses Spektrometers $(30-35^\circ)$ aufgenommen. In allen Fällen diente Tetrachlorkohlenstoff als Lösungsmittel und Tetramethylsilan als innerer Standard. Die Konzentration an Substanz und Standard betrugen dabei ca. 5 Gew.-%. Alle chemischen Verschiebungen wurden in Hz angegeben; negative Vorzeichen gelten für niedrigere Feldstärken, bezogen auf den Standard (Fehlergrenze ± 1 Hz). Zur Bestimmung der Kopplungskonstanten intensitätsschwacher Satelliten wurden Lösungen mit ca. 35 Gew.-% verwendet. Kleine Kopplungskonstanten und die Feinstruktur der Multiplette wurden bei

¹⁸⁾ J. Goubeau und J. Jimenez-Barbera, Z. anorg. allg. Chem. 303, 217 (1960).

 ¹⁹⁾ E. A. V. Ebsworth, Volatile Silicon Compounds, S. 101 ff., Pergamon Press, Oxford 1963.
 20) G. Schwarzenbach, Die komplexometrische Titration, S. 85, Verlag Ferdinand Enke, Stuttgart 1957.

²¹⁾ G. Jander und K. F. Jahr, Maßanalyse, S. 158, Sammlung Göschen, Band 221/221a.

höchster Auflösung des Spektrums genau bestimmt, so daß hier Fehlergrenzen von nur ± 0.1 Hz gelten. Zur Eichung dienten Substanzen mit bekannten Kopplungskonstanten, z. B. Tetramethylsilan.

Die *IR-Spektren* wurden mit einem Perkin-Elmer-, Infracord"-Spektrometer Modell 337 im Bereich von 1400-400/cm aufgenommen. Flüssigkeiten wurden kapillar, Festsubstanzen in Nujol-Suspensionen zwischen KBr-Fenstern vermessen. Der meist zusätzlich aufgenommene Bereich von 4000-1400/cm stand im Rahmen dieser Arbeit nicht im unmittelbaren Interesse und wurde deshalb nicht berücksichtigt. Die Spektren wurden mit Eichbanden kontrolliert, so daß mit Fehlergrenzen von nur 3-5/cm zu rechnen ist.

Ausgangsmaterialien

Trimethyl- und Triäthylphosphin wurden nach Literaturvorschriften aus Phosphortrichlorid durch Grignardierung erhalten^{22, 23)}. Triphenylphosphin ist käuflich. Die Ätherate von Trimethylaluminium-, -gallium und -indium wurden in Anlehnung an l. c.²⁴⁾ durch Methylierung der Metalltrichloride mittels Methyllithium in Äther dargestellt. Trimethylsilylazid erhielten wir aus Trimethylchlorsilan und Natriumazid in Diäthyläther als Lösungsmittel. Dieses Verfahren unterscheidet sich nicht unwesentlich von Literaturvorschriften²⁵⁾, da man so mit einfachen Ausgangsmaterialien und billigem Lösungsmittel auskommt. Auch die Aufarbeitung ist unproblematisch.

Beispiel: 44.6 g $(CH_3)_3SiCl$ (0.41 Mol) und 27.5 g NaN_3 (0.42 Mol) wurden in 500 ccm lithiumalanat-trockenem Äther unter Zusatz katalytischer Mengen AlCl₃ 8 Tage bei Raumtemperatur gerührt. Das ausgeschiedene Natriumchlorid und das nicht vollständig umgesetzte NaN₃ wurden dann unter Stickstoff abfiltriert und der größte Teil des Äthers sofort abgezogen. Die endgültige destillative Aufarbeitung erfolgte über eine kleine Füllkörperkolonne. Sdp. 95°, Ausb. 28.15 g (0.24 Mol = 59.5%). Das Präparat ist NMR-spektroskopisch rein.

Darstellung der Komplexe

N-Trimethylsilyl-triäthylphosphinimin (2) und -triphenylphosphinimin (3) wurden nach der Literatur aus den entsprechenden Phosphinen und Trimethylsilylazid dargestellt^{6,7)}. *N*-Trimethylsilyl-trimethylphosphinimin (1) wurde ähnlich erhalten: Zu 21 g leicht siedendem $(CH_3)_3SiN_3$ (0.18 Mol) wurden aus einem mit Methanol/Trockeneis auf -30° gekühlten Tropftrichter langsam 13.5 g $(CH_3)_3P$ (0.17 Mol) getropft. Es entwickelten sich sofort große Mengen Stickstoff. Nach Beendigung der Reaktion wurde destilliert. Sdp. 169°, Sdp.₁₂ 58°. Ausb. 16.2 g (0.1 Mol = 56%). Molgewicht und Analyse s. Tab. 10. Ein weiteres Darstellungsverfahren für 1 wird in einer nachfolgenden Arbeit beschrieben.

Die Synthese der Komplexe 4-13 erfolgte im wesentlichen nach dem gleichen Schema. Hierfür wird im folgenden eine allgemeine Vorschrift gegeben, die zusammen mit den Angaben in Tab. 10 eine Nacharbeitung der Versuche ermöglicht.

In einem kleinen Rundkolben wurde eine genau abgewogene Menge des N-Silyl-phosphinimins mit einem geringen Überschuß an Trimethylmetall-ätherat ohne Lösungsmittel zusammengegeben. Der Kolben wurde dann an eine kleine Destillationsapparatur angeschlossen und entweder sofort oder nach Ablauf der Reaktionszeit bei Raumtemperatur (7, 8, 9, 10 und 12) auf $100-120^{\circ}$ hochgeheizt. Der freiwerdende Äther wurde laufend über die Brücke abdestilliert, wodurch die Umsetzung quantitativ gestaltet wurde. Nach dem Ende der

²²⁾ F. G. Mann und A. F. Wells, J. chem. Soc. [London] 1938, 702.

²³⁾ H. Hibbert, Ber. dtsch. chem. Ges. 39, 161 (1906).

²⁴⁾ G. E. Coates, Organometallic Compounds, Methuen, London 1960.

²⁵⁾ Eine Übersicht gibt J. S. Thayer, Organometal. chem. Rev. 1, 157 (1966).

Reaktionszeit (Tab. 10) wurde der geringe Überschuß an Alkylmetall-ätherat i. Vak. abgezogen. Dabei kristallisierte das Rohprodukt aus. Zur weiteren Reinigung diente eine Vakuumdestillation oder Rekristallisation. Letztere ist vor allem bei 5, 8, 9, 11 und 13 zu empfehlen, 4, 7 und 8 können auch mit Vorteil sublimiert werden. Ansätze und Ausbeuten, Reaktionsdauer und -temperatur sowie Molgewichte und Analysen gibt Tab. 10.

			-			-							
			4	5	6	7	8	9	10	11	12	13	1
		R	СН3	CH3	CH3	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	CH3	C6H2	C ₂ H ₅	C6H2	
(CH ₃) ₃ SiNPR ₃		g	4.25	4.30	3.50	4.05	5.64	3.53	2.50	5.25	2.00	5.50	
	m	Mol	26.0	26.3	21.4	19.7	27.5	17.2	15.3	15.0	9.74	15.5	
		Me	Al	Ga	In	Al	Ga	In	Ala	D Ga	Ala) Al	
$(CH_3)_3Me \cdot O(C_2H_5)_2$	2	g	4.50	5.50	4,70	3.30	6.04	3.85	1.80	4.00	1.10	3.00	
	ml	Mol	30.8	27.0	21.7	22.6	29.6	17.6	15.8	19.7	9. 64	20.5	
ReaktDauer	N	din.	15	20	15	5	10	10	25	180	25	150	
-Temp.			120°	1 00 °	110°	20°	20°	20°	20°	1 00 °	20°	110°	
Rohausb.		g	6.05	7.25	6.80	5.37	8.60	6.10	4.10		3.00		
		%	98.8	99.2	98.1	98.5	97.5	97.1	97.7		97.4		
Reinausb.		g	5,90	6.70	6.25	5.25	8.10	5.15	3.50	6.30	2.45	5.30	
		%	96.5	91.6	90.2	95.5	92.0	82.0	82.4	90.7	79.5	81.1	
	J	Ber.	235.4	278.1	·323.2	277.5	320.2	365.3	277.5	464.3	319.5	421.6	163.3
MolGew.		Gaf	242.7	266.8	282.5	271.8	308.0	360.5	272.7	457.1	304.4	411.7	159.3
(kryoskop. in Benzol	b '	Jei.	241.6	274.8	317.4	261.7	310.1	341.5	253.3	448.3	298.7	392.9	
Analysen C	1	Вег.						39.46	51.95	62.08	56,39		44.14
	(Gef.						39.37	50.82	61.33	55.04	L	43.65
н	1	Ber.						9.11	11.99	7.16	12.30)	11.11
	(Gef.						8.95	11.82	6.69	11.78	:	11.40
N	le 1	Вет.	11.46	25.07	35.53	9.72	21.77	31.44	9.72	2 15.02	8.44	6.40	
	0	Gef.	11.40	25.28	35.41	9.66	21.81	31.20	9.87	15.21	8.49	6.56	
N		Ber.	5.95	5.04	4.33	5.05	4.37		5.05	5	4.38	3.32	8.58
	(Gef.	6.02	5.01	4.21	5.18	4.39		5.35	5	4.62	2 2.97	8.6

Tab. 10.	Ansätze,	Reaktionsbedi	ngungen und	Ausbeuten	bei der	Darstellung	der	Verbin-
	dung	en 4-13 sowie	Molgewicht	e und Analys	en von 1	l und 4–13		

a) Al(C2H5)3 ohne Äther!

[417/66]